Tetrahedron: Asymmetry Vol. 4. No. 2 pp. 153-156 1993 Printed in Great Britain

Enzyme-catalyzed Lactonization of Methyl (2)~(E)3,5=Dihydroxy-7-phenyl-6-heptenoates. - A Comparison of the Behaviour of *syn-* **and anti-Compounds1**

Birgitta Henkel, **Annamarie Kunatk, Hans Schick***

Centre of Selective Organic Synthesis, Rudower Chaussee 5, D(O)-1199 Berlin-Adlershof, Federal Republic of Germany

(Received *in UK* 30 November 1992)

Abstract: 3-Hydroxy lactones with a high enantiomeric excess were obtained by the lipase-catalyzed enantioselective lactonization of racemic syn- and anti-3,5-dihydroxy carboxylic esters. The (5S)-lactones were formed predominantly from both diols with pancreatin as enzyme. The lipase from *Candida sp.* 382, however, catalyzed the preferential formation of the (5S)-lactone only from the syn-diol. From the anti-diol the (5R)-lactone was formed as **the main enantiomcr.**

The enantioselective enzyme-catalyzed lactonization of several alkyl syn-3,5-dihydroxyalkanoates² and -alkenoates³ recently has been investigated, as the resulting 5-substituted $(3R,5S)$ -3-hydroxy-5-pentanolides exhibit the structure of the lactone part of compactin⁴ and mevinolin,⁵ which are known as potent inhibitors of the hydroxymethylglutaryl coenzyme A reductase.⁶ Continuing our efforts directed towards the use of enzymes in enantioselective lactonizations of alkyl 3,5-dihydroxy carboxylates, we now concentrated our interest on the influence of the configuration of the hydroxy groups on the stereochemical outcome of a lipase-catalyxed intramolecular transesterification. The compounds **we-1** and *me-5* have been chosen as substrates for a comparison between a syn- and an anti-diol.

154 B. HENKEL et al.

The syn-diol rac-1 and the anti-diol rac-5 were obtained as pure diastereomers by reduction of the keto ester $rac{43}$ with sodium borohydride/ethoxydimethylborane in THF/hexane⁷ and sodium triacetoxyborohydride in acetic acid, 8 respectively.

Both racemic diols were subjected to lactonization in the presence of pancreatin and the lipase from *Can&da sp.* 382 in various ethers at 22'C. The reaction was monitored by TLC and terminated after the time given in the Table. The enantiomeric excess (e.e.) of the lactones 2 ent-2 and 6 /ent-6, which were isolated from the reaction mixture by column chromatography, was determined by HPLC on a chiral phase. The absolute configuration of the lactones 6 and $ent-6$ was established by dehydration with phosphoryl chloride in pyridine to (-)-(S)-goniothalamin⁹ (3) and (+)-(R)-goniothalamin⁹ (ent-3), as already described for the lactones 2 and *ent*- $2³$. The results are compiled in the Table.

The pancreatin-catalyzed lactonization of the syn-diol rac-1 in diethyl ether afforded the $(3R,5S)$ -lactone 2 in a yield of 33 % with an enantiomeric excess (e.e.) of 80 % (Table, entry 1). Assuming that this relatively low conversion was caused by an equilibrium between the methyl esters $1/ent-1$, the lactone $2/ent-2$, and the formed methanol, this axperiment was repeated in the presence of molecular sieve 4& Indeed, by this procedure the rate of the lactonization could be increased. A conversion of 33 % could be reached in one third of the time and the e.e. could be enhanced up to 92 % (entry 2). A repetition of this experiment with the diol 1/ent-1 with an e.e. of 92 % yielded the lactone 2 with an e.e. of >99 % (entry 3).

The pancreatin-catalyzed lactonization of the *anti*-diol rac-5 provided the lactone 6 in a yield of 13 % with an e.e. of 31% (entry 1). Addition of molecular sieve 4\AA accelerated the lactonization and increased the yield, but dropped the e-e. of the predominantly formed lactone 6 to 17 % (entry 2).

The use of diisopropyl ether, tert-butyl methyl ether, or tetrahydrofuran as solvent for the pancreatincatalyzed lactonization of the *syn-* and *anti-*diols rac-1 and rac-5 did not improve the outcome of the reaction (entries 4-6).

 \mathbf{I}

a) Panc.; pancreatin; Cand.; lipase from *Candida sp.* 382, ^{b)} E.e. of lactone 2, ^{c)} E.e. of lactone 6. ^{d)} Lactonization in the presence of molecular sieve 4Å (200 mg). c) Starting from syn-diol 1 with an e.e. of 92 %. ^f) E.e. of lactone ent-6, 8) Starting from anti-diol ent-5 with an e.e. of 73 %.

With the lipase from Candida sp. 382 as enzyme and diethyl ether as solvent, the syn-diol rac-1 afforded the lactone 2 with only 53 % e.e. in a yield of 29 % (entry 7). That means that this lipase is not superior to pancreatin in respect to the enantioselective lactonization of rac-1. However, under the same conditions, the anti-diol rac-5 afforded the lactone ent-6 with an e.e. of 73 % (entry 7). The use of molecular sieve $4\AA$ again accelerated the reaction, but the e.e. was not increased (entry 8). Lactone ent-6 with an e.e. of 96 % was obtained when enantiomerically emriched *anti*-diol **ent-5/5**, prepared by esterification with methanol in the presence of triethylamine from $ent-6/6$ with an e.e. of 73 %, was once more subjected to a lactonization catalyzed by the lipase from Candida sp. 382 (entry 9). Recrystallization from diisopropyl ether provided enantiomerically pure ent-6.

As well, in the case of the lipase from *Candida sp.* 382, diethyl ether was superior to the other investigated ethers (entries 10-12).

In conclusion, in the presence of pancreatin, syn-diol rac-1, as well as anti-diol rac-5, were lactonized preferentially to the lactones with $(5S)$ -configuration, i. e. 2 and 6. The enantioselectivity was higher in the case of the syn-diol.

In the presence of the lipase from *Candida sp.* 382, the syn-diol rac-1 again was predominantly lactonized to the lactone 2 with $(5S)$ -configuration. The anti-diol rac-5, however, afforded preferentially the lactone ent-6 with (5R)-configuration. For this enzyme the enantioselectivity was higher in the case of the anti-diol.

Methyl (±)-(3R^{*},5R^{*},6E)-3,5-Dihydroxy-7-phenyl-6-heptenoate (rac-5): Sodium borohydride (1.1 g, **29.2 mmol)** was added trader argon at **18°C** in small portions to acetic acid (35 ml) and stirred for 5 min until the hydrogen formation ceased. Then the keto ester rac-4³ (1.83 g, 7.4 mmol) dissolved in acetic acid (8 ml) was added and stirring was continued at 22'C for 2 h. Acetic acid was removed under reduced pressure. The residue was distributed between water (50 ml) and dichloromethane (50 ml). After separation the aqueous phase was extracted with dichloromethane (3 x 40 ml). The organic phase and the combined extracts were dried with sodium sulfate and concentrated under reduced pressure. Flash chromatography of the residue on silica gel with hexane/ethyl acetate $(1:2)$ as eluant afforded a 88:12 mixture $(1.56 \text{ g}, 85 \text{ %})$ of the *anti*-diol rac-5 and the syn-diol rac-1. Pure rac-5 (1.1 g; 61 %) was obtained by recrystallization from diisopropyl ether in the form of yellow needles: M.p. 52-54°C; ¹³C NMR (CDCl₃): $\delta = 41.15$, 42.16, 51.92, 65.69, 70.07, 126.69, 127.86, 128.80, 130.26, 131.97, 136.88, 173.45; Anal. calcd. for $C_{14}H_{18}O_4$: C, 67.18; H, 7.25. Found: C, 66.95; H, 7.21.

Enzyme-catalyzed Lactonization of the syn-Diol rac-1 and the anti-Diol rac-5. - General Procedure: Pancreatin¹⁰ (400 mg) or lipase from Candida sp. 382¹¹ (80 mg) were added to a solution of **rac-1** and rac-5, respectively, (200 mg, 0.8 mmol) in the solvent (10 ml) given in the Table. The mixture was stirred at 22°C for 8-214 h. Then the enzyme was filtered off and the filtrate was concentrated under reduced pressure. Column chromatography of the residue with ethyl acetate/diethyl ether $(1:1)$ as eluant afforded the lactones *2/ent-2* and *6/ent-6*. The e.e. were determined by HPLC with hexane/2-propanol (80:20, v:v) as eluant. At a flow rate of 2 ml/min the retention times were 6.3 min for $ent-2$ and 8.7 min for 2 on Chiralcel OF. The corresponding values for 6 and *ent-*6 were 24.7 and 22. 2 min at a flow rate of 0.5 ml/min on Chiralcel OD. Yields and e.e.'s are given in the Table.

(3R,5S,6E)-3-Hydroxy-7-phenyl-6-hepten-5-olide (2): M.p. 103-105°C (Et₂O) (Ref.³: M.p. 103-105°C); $[\alpha]_D^{20} = 12$ (c = 0.95, CH₂Cl₂), e.e. = >99 %.

 $(3R,5R,6E)$ -3-Hydroxy-7-phenyl-6-hepten-5-olide (ent-6): M.p. 89-91⁻C (tPr₂O); $[\alpha]_D^{20}$ = -16 (c = 0.75, methanol), e.e. = 96 %; ¹³C NMR (CDCl₃): δ = 38.32, 39.57, 63.93, 77.70, 126.22, 126.94, 128.59, 128.92, 133.09, 135.95, 170.61; Anal. calcd. for C₁₃H₁₄O₃: C, 71.54; H, 6.47. Found: C, 71.12; H. 6.43.

Acknowledgement. The authors are grateful to Mrs. Karin Schiche for skilful technical assistance. Financial support by the Fonds der Chemischen Industrie is gratefully acknowledged.

References and Notes

- 1. Enzymes in Organic Synthesis, 16. For part 15 see Schick, H.; Schrötter, E.; Szymanowski, M.; Knoll, A. *Liebigs Ann. Chem.,* in press.
- 2. Bonini, C.; Pucci, P.; Viggiani, L. *J. Org. Chem.* **1991,56,4050-4052.**
- 3. Henkel, B.; Kunath, A.; Schick, H. *Liebigs Ann. Chem.* 1992, 809-811.
- 4. Endo, A.; Kutoda, M.; Tsujita, Y. *J. Antibiotics 1976,29,1346-1348.*
- 5. Endo, A. *J. Antibiotics* 1979, 32, 852-854.
- 6. Endo, A. *Klin. Wochenschr. 1988,66,421-427.*
- 7. Chen, K.-M:; Har&mann, G. E.; Prasad, K.; Repic, 0.; Shapiro, M. J. *Tetrahedron Len.* **1987,28,** *155- 158.*
- 8. *Saksena,* A. K.; Mgngiaracina., P. *Tetrahedron Lett.* **1983,24,273-276.**
- 9. Meyer, II. H. *Liebigs Ann. Chem. 1979,484491.*
- 10. Pancreatin (6 x NF, 360 U/g, triolein as substrate, 5.4% H₂O) was purchased from Fa. Belger, Kleinmachnow, Germany.
- 11. Lipase from Candida sp. 382 (40 BIU/g, 2 % H₂O) was a generous gift of Novo Industri A/S, Copenhagen, Denmark.