Tetrahedron: Asymmetry Vol. 4, No. 2, pp. 153-156, 1993 Printed in Great Britain

Enzyme-catalyzed Lactonization of Methyl (±)-(E)-3,5-Dihydroxy-7-phenyl-6-heptenoates. - A Comparison of the Behaviour of syn- and anti-Compounds¹

Birgitta Henkel, Annamarie Kunath, Hans Schick*

Centre of Selective Organic Synthesis, Rudower Chaussee 5, D(O)-1199 Berlin-Adlershof, Federal Republic of Germany

(Received in UK 30 November 1992)

Abstract: 3-Hydroxy lactones with a high enantiomeric excess were obtained by the lipase-catalyzed enantioselective lactonization of racemic syn- and anti-3,5-dihydroxy carboxylic esters. The (5S)-lactones were formed predominantly from both diols with pancreatin as enzyme. The lipase from *Candida sp. 382*, however, catalyzed the preferential formation of the (5S)-lactone only from the syn-diol. From the anti-diol the (5R)-lactone was formed as the main enantiomer.

The enantioselective enzyme-catalyzed lactonization of several alkyl syn-3,5-dihydroxyalkanoates² and -alkenoates³ recently has been investigated, as the resulting 5-substituted (3R,5S)-3-hydroxy-5-pentanolides exhibit the structure of the lactone part of compactin⁴ and mevinolin,⁵ which are known as potent inhibitors of the hydroxymethylglutaryl coenzyme A reductase.⁶ Continuing our efforts directed towards the use of enzymes in enantioselective lactonizations of alkyl 3,5-dihydroxy carboxylates, we now concentrated our interest on the influence of the configuration of the hydroxy groups on the stereochemical outcome of a lipase-catalyzed intramolecular transesterification. The compounds *rac-1* and *rac-5* have been chosen as substrates for a comparison between a *syn*- and an *anti*-diol.

B. HENKEL et al.

The syn-diol rac-1 and the anti-diol rac-5 were obtained as pure diastereomers by reduction of the keto ester rac- 4^3 with sodium borohydride/ethoxydimethylborane in THF/hexane⁷ and sodium triacetoxyboro-hydride in acetic acid,⁸ respectively.

Both racemic diols were subjected to lactonization in the presence of pancreatin and the lipase from *Candida sp. 382* in various ethers at 22°C. The reaction was monitored by TLC and terminated after the time given in the Table. The enantiomeric excess (e.e.) of the lactones 2/ent-2 and 6/ent-6, which were isolated from the reaction mixture by column chromatography, was determined by HPLC on a chiral phase. The absolute configuration of the lactones 6 and *ent-6* was established by dehydration with phosphoryl chloride in pyridine to (-)-(S)-goniothalamin⁹ (3) and (+)-(R)-goniothalamin⁹ (*ent-3*), as already described for the lactones 2 and *ent-2³*. The results are compiled in the Table.

The pancreatin-catalyzed lactonization of the syn-diol rac-1 in diethyl ether afforded the (3R,5S)-lactone 2 in a yield of 33 % with an enantiomeric excess (e.e.) of 80 % (Table, entry 1). Assuming that this relatively low conversion was caused by an equilibrium between the methyl esters 1/ent-1, the lactone 2/ent-2, and the formed methanol, this experiment was repeated in the presence of molecular sieve 4Å. Indeed, by this procedure the rate of the lactonization could be increased. A conversion of 33 % could be reached in one third of the time and the e.e. could be enhanced up to 92 % (entry 2). A repetition of this experiment with the diol 1/ent-1 with an e.e. of 92 % yielded the lactone 2 with an e.e. of >99 % (entry 3).

The pancreatin-catalyzed lactonization of the *anti*-diol *rac-5* provided the lactone **6** in a yield of 13 % with an e.e. of 31% (entry 1). Addition of molecular sieve 4Å accelerated the lactonization and increased the yield, but dropped the e.e. of the predominantly formed lactone **6** to 17 % (entry 2).

The use of diisopropyl ether, tert-butyl methyl ether, or tetrahydrofuran as solvent for the pancreatincatalyzed lactonization of the syn- and anti-diols rac-1 and rac-5 did not improve the outcome of the reaction (entries 4-6).

En- try	En- zyme ^{a)}	Sol- vent	Lactone 2/ent-2			Lactone 6/ent-6		
			Time (h)	Yield (%)	E.e.b) (%)	Time (h)	Yield (%)	E.e. (%)
1	Panc.	Et ₂ O	214	33	80	106	13	31c)
2	Panc.	Et ₂ O ^{d)}	71	33	92	80	26	17c)
3	Panc.	Et ₂ Od,e)	117	35	9 9	-	-	-
4	Panc.	tBuOMe	40	34	72	80	14	36 ^{c)}
5	Panc.	iPr ₂ O	40	27	73	80	15	36c)
6	Panc.	THF	200	12	69	106	8	22 ^{c)}
7	Cand.	Et ₂ O	100	29	53	30	29	73f)
8	Cand.	Et ₂ O ^{d)}	-	-	-	8	30	74f)
9	Cand.	Et ₂ Og)	-	-	-	30	28	96 ^{f)}
10	Cand.	tBuOMe	45	31	54	30	31	58f)
11	Cand.	iPr ₂ O	45	22	66	30	25	64f)
12	Cand.	THF	192	12	38	80	14	2 9 f)

Table . Enantioselective Formation of the Lactones 2/ent-2 and 6/ent-6 by an Enzyme-catalyzed Lactoniza-
tion of the syn-Diol rac-1 and the anti-Diol rac-5

a) Panc.: pancreatin; Cand.; lipase from *Candida sp. 382*. ^{b)} E.e. of lactone 2. ^{c)} E.e. of lactone 6. ^{d)} Lactonization in the presence of molecular sieve 4Å (200 mg). ^{c)} Starting from *syn*-diol 1 with an e.e. of 92 %. ^{f)} E.e. of lactone *ent*-6. ^{g)} Starting from *anti*-diol *ent*-5 with an e.e. of 73 %.

With the lipase from Candida sp. 382 as enzyme and diethyl ether as solvent, the syn-diol rac-1 afforded the lactone 2 with only 53 % e.e. in a yield of 29 % (entry 7). That means that this lipase is not superior to pancreatin in respect to the enantioselective lactonization of rac-1. However, under the same conditions, the anti-diol rac-5 afforded the lactone ent-6 with an e.e. of 73 % (entry 7). The use of molecular sieve 4Å again accelerated the reaction, but the e.e. was not increased (entry 8). Lactone ent-6 with an e.e. of 96 % was obtained when enantiomerically enriched anti-diol ent-5/5, prepared by esterification with methanol in the presence of triethylamine from ent-6/6 with an e.e. of 73 %, was once more subjected to a lactonization catalyzed by the lipase from Candida sp. 382 (entry 9). Recrystallization from diisopropyl ether provided enantiomerically pure ent-6.

As well, in the case of the lipase from *Candida sp. 382*, diethyl ether was superior to the other investigated ethers (entries 10-12).

In conclusion, in the presence of pancreatin, syn-diol rac-1, as well as anti-diol rac-5, were lactonized preferentially to the lactones with (5S)-configuration, i. e. 2 and 6. The enantioselectivity was higher in the case of the syn-diol.

In the presence of the lipase from Candida sp. 382, the syn-diol rac-1 again was predominantly lactonized to the lactone 2 with (5S)-configuration. The anti-diol rac-5, however, afforded preferentially the lactone ent-6 with (5R)-configuration. For this enzyme the enantioselectivity was higher in the case of the anti-diol.

Methyl (±)-($3R^*, 5R^*, 6E$)-3,5-Dihydroxy-7-phenyl-6-heptenoate (*rac*-5): Sodium borohydride (1.1 g, 29.2 mmol) was added under argon at 18°C in small portions to acetic acid (35 ml) and stirred for 5 min until the hydrogen formation ceased. Then the keto ester **rac**-4³ (1.83 g, 7.4 mmol) dissolved in acetic acid (8 ml) was added and stirring was continued at 22°C for 2 h. Acetic acid was removed under reduced pressure. The residue was distributed between water (50 ml) and dichloromethane (50 ml). After separation the aqueous phase was extracted with dichloromethane (3 x 40 ml). The organic phase and the combined extracts were dried with sodium sulfate and concentrated under reduced pressure. Flash chromatography of the residue on silica gel with hexane/ethyl acetate (1:2) as eluant afforded a 88:12 mixture (1.56 g, 85 %) of the *anti*-diol *rac*-5 and the *syn*-diol *rac*-1. Pure *rac*-5 (1.1 g; 61 %) was obtained by recrystallization from diisopropyl ether in the form of yellow needles: M.p. 52-54°C; ¹³C NMR (CDCl₃): $\delta = 41.15$, 42.16, 51.92, 65.69, 70.07, 126.69, 127.86, 128.80, 130.26, 131.97, 136.88, 173.45; Anal. calcd. for C₁₄H₁₈O₄: C, 67.18; H, 7.25. Found: C, 66.95; H, 7.21.

Enzyme-catalyzed Lactonization of the syn-Diol rac-1 and the anti-Diol rac-5. - General Procedure: Pancreatin¹⁰ (400 mg) or lipase from Candida sp. 382^{11} (80 mg) were added to a solution of rac-1 and rac-5, respectively, (200 mg, 0.8 mmol) in the solvent (10 ml) given in the Table. The mixture was stirred at 22° C for 8-214 h. Then the enzyme was filtered off and the filtrate was concentrated under reduced pressure. Column chromatography of the residue with ethyl acetate/diethyl ether (1:1) as eluant afforded the lactones 2/ent-2 and 6/ent-6. The e.e. were determined by HPLC with hexane/2-propanol (80:20, v:v) as eluant. At a flow rate of 2 ml/min the retention times were 6.3 min for ent-2 and 8.7 min for 2 on Chiralcel OF. The corresponding values fort 6 and ent-6 were 24.7 and 22. 2 min at a flow rate of 0.5 ml/min on Chiralcel OD. Yields and e.e.'s are given in the Table.

(3R,5S,6E)-3-Hydroxy-7-phenyl-6-hepten-5-olide (2): M.p. 103-105°C (Et₂O) (Ref.³: M.p. 103-105°C); $[\alpha]_D^{20} = 12$ (c = 0.95, CH₂Cl₂), e.e. = >99 %.

(3R,5R,6E)-3-Hydroxy-7-phenyl-6-hepten-5-olide (ent-6): M.p. 89-91°C (iPr₂O); [α]_D²⁰ = -16 (c = 0.75, methanol), e.e. = 96 %; ¹³C NMR (CDCl₃): δ = 38.32, 39.57, 63.93, 77.70, 126.22, 126.94, 128.59, 128.92, 133.09, 135.95, 170.61; Anal. calcd. for C₁₃H₁₄O₃: C, 71.54; H, 6.47. Found: C, 71.12; H. 6.43.

Acknowledgement. The authors are grateful to Mrs. Karin Schiche for skilful technical assistance. Financial support by the Fonds der Chemischen Industrie is gratefully acknowledged.

References and Notes

- 1. Enzymes in Organic Synthesis, 16. For part 15 see Schick, H.; Schrötter, E.; Szymanowski, M.; Knoll, A. Liebigs Ann. Chem., in press.
- 2. Bonini, C.; Pucci, P.; Viggiani, L. J. Org. Chem. 1991, 56, 4050-4052.
- 3. Henkel, B.; Kunath, A.; Schick, H. Liebigs Ann. Chem. 1992, 809-811.
- 4. Endo, A.; Kuroda, M.; Tsujita, Y. J. Antibiotics 1976, 29, 1346-1348.
- 5. Endo, A. J. Antibiotics 1979, 32, 852-854.
- 6. Endo, A. Klin. Wochenschr. 1988, 66, 421-427.
- 7. Chen, K.-M.; Hardtmann, G. E.; Prasad, K.; Repic, O.; Shapiro, M. J. Tetrahedron Lett. 1987, 28, 155-158.
- 8. Saksena, A. K.; Mangiaracina, P. Tetrahedron Lett. 1983, 24, 273-276.
- 9. Meyer, H. H. Lieb gs Ann. Chem. 1979, 484-491.
- 10. Pancreatin (6 x NF, 360 U/g, triolein as substrate, 5.4% H₂O) was purchased from Fa. Belger, Kleinmachnow, Germany.
- 11. Lipase from *Candida sp. 382* (40 BIU/g, 2 % H₂O) was a generous gift of Novo Industri A/S, Copenhagen, Denmark.